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Abstract The Hamiltonian analysis for the Einstein’s action in G — 0 limit is performed.
Considering the original configuration space without involve the usual ADM variables we
show that the version G — 0 for Einstein’s action is devoid of physical degrees of freedom.
In addition, we will identify the relevant symmetries of the theory such as the extended ac-
tion, the extended Hamiltonian, the gauge transformations and the algebra of the constraints.
As complement part of this work, we develop the covariant canonical formalism where will
be constructed a closed and gauge invariant symplectic form. In particular, using the geo-
metric form we will obtain by means of other way the same symmetries that we found using
the Hamiltonian analysis.

Keywords Hamiltonian dynamics - Topological theory - Covariant canonical formalism

1 Introduction

Hamiltonian analysis for Einstein’s theory of gravity has been great topic of study in the last
years. As we know, the history begins with the work reported by Arnowitt-Deser-Misner
(ADM) where the 3 + 1 split of the space time allows us to study the Hamiltonian dy-
namics, the constraints and the symmetries of general relativity theory. In the ADM work,
the fundamental variables to preform the Hamiltonian analysis are considered the 3-metric
and its respectively conjugate momenta [1]. However, when we try to make progress in the
quantization of the theory this program presents difficulties, because the no linearly of the
gravitational field is manifested in the constraints. In this manner, at quantum level to work
with these variables (ADM variables) presents several problems.
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In the 80’s, the panorama becomes to be clarified thanks to the greats works developed by
Ashtekar introducing a kind of new variables for studying the Hamiltonian dynamics for the
gravitational field [2—4]. The use of these new variables leads to a important simplification of
the equations of the theory. In this program, both the constraints and the evolution equations
of the canonical general relativity become simple polinomials of the field variables. Never-
theless, the price to pay for these simplifications is that the Astekar’s variables are complex,
and therefore Ashtekar canonical formulation describes complex general relativity. In order
to obtain the real physical degrees of freedom one needs to append a posteriori appropriate
reality conditions [5, 6]. After the Asthekar’s works, the study of canonical gravity in its
classical or quantum form has been of great interest in the literature [7-13], especially in the
loop quantum gravity context [14, 15].

On the other hand, in recently works has been proposed to study using the Ashtekar for-
mulation the G — 0 limit of Euclidean or complexified general relativity, where the quanti-
zation of the theory in the loop representation is obtained and infinite dimensional space of
exact solutions to the constraints are found [16]. The study of Einstein’s theory in this limit
becomes to be relevant because we could make progress to study a different approach to per-
turbation theory at quantum level. As we know, the standard way for studying this important
part in gravity is making the perturbation around a classical background metric, but in the
process the relevant symmetries of Einstein’s theory are lost, namely the background inde-
pendence and diffeomorphisms. However, the model reported in [16] marks a big difference
respect to the standard treatment because in the limit the symmetries of general relativity are
not lost. Thus, we could have now a new starting point to analyze in the mentioned limit a
full diffeomorphism invariant and background independent theory.

On the other side, in this same context we find in [17] other different proposal, where
setting the G — 0 limit for general relativity written in the first order formalism and under
a change of variables, the theory becomes to be a copy of Abelian BF topological field
theory. Furthermore, using a kind of (ADM) variables the Hamiltonian analysis for the theory
is performed, allows us to find a connection with parametrized field theory [17-19]. It is
important to observe that the models purposed in [16] and [17] are quite different. In the
first one model, the Astekar’s variables has been used and the relevant results reported are
that Euclidean general relativity in the G — 0 limit is not a free theory because the model
has two degrees of freedom. In the second one model, we find that in G — 0 limit general
relativity expressed in the first oder formalism becomes to be a free field theory.

With all these antecedents, the purpose of this paper is to report the Hamiltonian analysis
for the model presented in [17] without involve the ADM variables. The reason to do this
is simple, we wish to report the symmetries and the constraints of the theory from other
point of view. This is, in this work we report the Dirac’s analysis using only the dynamical
variables implicated in the action. In this way, we are showing that is possible to obtain the
same physical information for the theory without resort to ADM variables. We finish our
analysis developing the covariant canonical formalism for the theory under study, and we
obtain by means of a different way the symmetries found using the Hamiltonian method.
Therefore, in this work we are establishing the bases to quantize the theory in forthcoming
works.

The paper is organized as follows. In Sect. 2, we present a pure Dirac analysis for general
relativity in G — 0 limit. As important part that we will find in this section are the extended
action, the extended Hamiltonian and the identification of the first and second class con-
straints. In addition, with the complete classification of the constraints we carry out the
counting of the physical degrees of freedom and we present the Dirac bracket for the theory.
In Sect. 2.1, using Catellani’s algorithm we will find the gauge symmetries for the theory.

@ Springer



2488 Int J Theor Phys (2009) 48: 24862498

In particular we prove that the theory under study is invariant under diffeomorphisms. In
Sect. 3, using basic concepts of symplectic geometry we construct a closed and gauge in-
variant symplectic form on the covariant phase space, which turns represent a complete
covariant canonical description of the theory. Using the present geometric form, we repro-
duce the results found with the Hamiltonian method. In Sect. 4, we give some conclusions
and prospects.

2 Hamiltonian Analysis

As we know, the Einstein’s action for gravity written in the first order formalism is expressed
by [14, 16]

1
S[e,w]=1/ e'’le; Ney A Rgrlw], )]
M

where ! = e! ,dx* is the one-form tetrad field, R'’ [w] = %R”de“ Adx" is the curvature
of the SO(3, 1) 1-form connection w,’’ with R"/ ,, = 8,w," — d,w," + G(w, K w,x’ —
w,'®w, k’). Here, G is the gravitational coupling constant, ¢//&% is the completely anti-
symmetric object with €*2> =1, u,v=0,1,...,3 are spacetime indices, x* are the co-
ordinates that label the points for the 4-dimensional manifold M and I,J =0,1,...,3
are internal indices that can be raised and lowered by the internal Lorentzian metric
ny=(=1,1,1,1).
Setting the G — 0 limit , the above action becomes to be

1
Sle, wl = f el Kle e,p(dum," — 0,0,")dx?, )
M

where €%V is the volume 4-form. Calculating the variation of the action (2) we find the
next equations of motion

P e =0, A3)
and

€*P9, Brop = 0. “4)
Here, the two-forms B’,4 are defined by B',5 = —%e”KLe[a,meL, provided that the

tetrad is non-degenerate, B’ has inverse w,;; = %e”KLeﬂK(BLaﬂ — %eVLeaNBNﬂy). We
can see that (3) implies that e,; = 9, f7, SO g = 1179, f'3, f/. Which corresponds to
(locally) Minkowski spacetime [17].

With all these preliminar results, using the variable B and integrating by parts we can

rewrite the action (2) in the next form

1
S[B, e] = 3 / P B! 5 (D,e0r — dye,r)dx’. (5)
M

Thus, we can obtain from (5) the same equations of motion given in (3) and (4) considering
to B and e as our new dynamical variables. It is remarkable to note that the action (1) which
has an SO(3, 1) connection w,’”, in the G — 0 limit (2) becomes to be a collection of six
U (1) connections and the tetrad field e’ , is a collection of four gauge invariant vector fields,
we will prove this point performing the Hamiltonian analysis in the next lines.

The starting point of this work is the action (5), but to difference of the paper reported in
[17] we will not involve a kind of ADM variables for performing the Hamiltonian analysis,
in spite of in the canonical gravity context the standard way for developing the Hamiltonian
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dynamics is using these variables. The reason to do this is because in this work we aim to
report the Dirac’s method working with the full configuration space, this is, we will develop
the Dirac analysis using only the configuration variables involved in the action (5), namely
B, e. In this way, we can know the constrains in his complete form without fix any gauge,
the symmetries, the extended action and the extended Hamiltonian for the theory. Of course,
if we wish we can obtain the results reported by Nuno et al. [17] as particular case of this
paper considering the second class constraints as strong equations. Thus, with this letter we
are establishing the basis to quantize the theory described by (5) which will be reported in
forthcoming works.
Performing the 3 4+ 1 decomposition in the action (5) we find

. L e .
S[B, 6] = / [nachlubelc + ErlabLBIOa(abelc - acelb) - (nabC Blab)acelo] dx4, (6)

where n”b” =¢e%¢ g b, c=1,2,3. From (6), we can identify the Lagrangian density given

by
ha 1 aoc aoc
L= 7’)ahCBlarbelc + 577 b BIOa(abelc - acelb) —( b Blab)acelo~ @)

Dirac’s method calls for the definition of the momenta (IT;%#, IT;%) canonically conjugate
to (Bl yp, €' ,)) 120, 21]

0,9 — SL 0, — SL @®)
T T 8Bl " el
on the other hand, the matrix elements of the Hessian
9’ L ’L 3’ L
1 7y’ 1 7y’ 1 7y ®
0(0,B'45)3(3, B’ o) 0(0,e')0(3.B” o) 0(0,e')d(due’p)

are identically zero, the rank of the Hessian is zero. Thus, we expect 40 primary constraints.
From the definition of the momenta (8) we identify the next 40 primary constraints

¢,°:=11,"~0,
a.—11,9 — ah(‘B 0%07
¢g IO n“’ By (10)
¢ =" =0,
¢1ab = H[“b ~ 0.
The canonical Hamiltonian density for this system has the next form
He =" " + B o, 11,% + B, ;" — L
1
= _EnahCBIOa(abelc_acelb)‘l‘aaelonla- (11)

Integrating by parts and neglecting boundary terms at infinity, the canonical Hamiltonian
becomes

1 X
H.= /dx3 [_EnachIOa(abelc —dce'y) — 3an1a€10:| . (12)

Following with the method, adding to H, the 40 primary constraints (10) we identify the
primary Hamiltonian

Hp =H, +/dx3 [)\10¢’10 + 1 0+ M ™ + )»Iab¢lab] , (13)
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where A7g, AT, Al o4, AT 4y are Lagrange multipliers enforcing the constraints. For this the-
ory, the non-vanishing fundamental Poisson brackets are given by

{elo(x), TI;M(»)}=84818%(x — y),

(14)
(B! (x), T ()} = %aj(azaf — 505983 (x — y).

The 40 x 40 matrix whose entries are the Posson brackets among the constraints (10) given
by
{6:°00),6,°(M} =0, {$:°00), 8,1} =0,
(@' ). ¢/ =0, (¢ (). ¢, (1)} =0,
{61 "M} =0.  {91°(x). 0, (M} =0, (15)
(6@, M} =0, {1 (). s} = =" 018 (x = y),
{0/" ), 0,4} =0, {6/ (x), ¢, =0

has rank 24 and 16 linearly independent null-vectors. Thus, the null vectors and consistency
conditions yields to the next 16 secondary constraints [20, 21]

¢:°={¢°, Hp} =0 = Y, :=03,11,°~0,

. 1 16)
¢/ ={p," . Hp}~0 = Y, = Enabc(aben — dcerp) X0,
and the next values for the Lagrange multipliers
. 1
¢ =11 Hr}~0 = M= =0B 0 — 0B 00).
2 a7

¢ ={¢" Hr}~0 = 1,=0,

for the theory under study there are no, third constraints. At this point, we need to separate
all the primary and secondary constraints in first and second class constraints. For this step,
we need calculate the 56 x 56 matrix whose entries will be the Poisson brackets between
primary and secondary constraints (9), (14), this is

$:°00,6,°M =0, {$,°x), $,“(M} =0,
6:°00,6,“MY=0,  {$,°(x), 6, (M} =0,
$:°0). vy (MY=0.  {¢,°@). ¥, (M} =0,
{$1°0). 0" MY =0, {¢s°(x). ¢," (1} =0,
(P19, Yy =0, {$,°(x0), M} = =001, 8 (x — y),
@), vsMY=0, (/") v," MY =—n"n0.8(x —y),  (18)
@0, ¢,"MY=0,  {e/™(x), ¢4} =0,
1), Y My =0, {0, ¥,"(»)} =0,
{$:1(0), 0, =0,  {¢:° (), ¥, (N} =0,
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{01, ¥ ME=0,  {Y1(x), ¥} =0,
W), v My =0,  {Y (), ¥," ()} =0,

this matrix has rank 24 and 32 null-vectors. Thus, we expect 24 second class constraints and
32 first class constraints. From the null-vectors we identify the next 32 first class constraints

yi*:=11,°~0,
7/10(/1 = H[Oa %0’
v1:=0,11,* =0, 19)

a 1 abc ab
viti=3m (Opere — dcepp) — 0117 =0,

and the rank yields to the next 24 second class constraints

x4 :=T1;" — n** By, ~ 0,

X[ab = Hlab ~ 0. (20)
It is important to remark that the constraint y;¢ given in (19) is fixed by means of the null
vectors (see (16)) and become to be a first class constraint. In this way, the method itself
allows us to find from the rank and the null vectors of the matrix (18) all the right first and
second class constraints for the theory [20, 21]. This is the advantage that we find in Dirac’s
method when we apply it to the original configuration space, in this case given by B4 and
e’ . In general we can apply the analysis presented in this work to every theory. However,
the calculation of the rank and the null vectors of the matrices (15) and (18) usually is not
straightforward to perform [20, 21].

Furthermore, the 32 first class constraints given in (19) are not independent because there
are 4 reducibility conditions given by 9,y = 9,9, x* = 0, this reducibility condition is the
equivalent one that we find in the literature in the 4-dimensional BF theories [22] or in
topological invariants context [23]. In this manner, the counting of degrees of freedom is a
follows. There are 80 canonical variables (e’ ,,, B! 45, I1;%, I1,%f), [32 — 4] = 28 indepen-
dent first class constraints (y;°, ¥;%, y;, ;%) and 24 independent second class constraints
(x1%, x1%), thus, we can conclude that theory is devoid of physical degrees of freedom.
In others words, the theory defined by the action (5) is only sensitive to external degrees
of freedom for example, if we add to (5) matter degrees of freedom the theory will not be
topological anymore, just as was claimed in [17]. In addition, the action (5) does not depend
explicit of the spacetime metric, so, in this other sense the action becomes to be topological
as well [22].

With all these results at hand, we can use the values for the Lagrange multipliers (17),
the first class constraints (19), the second class constraints (20) and identify the extended
action for the theory expressed by

1 1 v 1 1 1 1 1 1
SE[e ws H[M,B /LU?HIM ,Uuo U ,Uog s Ug , Vg , VU ah]
iy 74 O 34 b
:/{6 HHIM-FB Oanl a+B a,,l'[,“
1., 0 1 1 a 1., Oa I, a 1 ab 4
—H—u'y," —u'yr —u'ay i —uo v " — v x, = wx s ldxt, 21
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where H is only combination of first class constraints

|
H= _BIOa |:§77abL (abelc - ace[b) - abl_IIahi| - aanlaeIOv (22)

and uo’, u’, ug,", u,", v,", v! 4y are the Lagrange multipliers enforcing the first and second
class constraints.
From the extended action we can identify the extended Hamiltonian which is given by

Hp=H —uo'y," —u'y; —u' oy " —uoa" v 1™ (23)

As we know, the equations of motion obtained by means of the extended Hamiltonian in
general are quite different with the Euler-Lagrange equations, but the difference is unphysi-
cal [20, 21].

In oder to complete our analysis, we can find the equations of motion obtained from the
extended action which yields to

sely: 11,9=—09,11,¢,

8H10:é’0=u’0,
1 T a 1 abc 1 abc
de' 1 =31 (8 Broc — 9 Brop) — 31 (Opttra — Ocup),
ST, % ¢l y=v, — 3¢’y — Bt 4,
. 1 )

8B o, : 11, = Enabc(abelc — deerp) — 0,1,
8T1,% : Bloy =u' o,
5Blah . f[]ab :Uabcvlu (24)

. 1 1
ST : B =00y + E(abBIOb —3:B"00) — E(abulb —du'y),

Sup’ 1y ,°=0,
Sug" 1y =0,

Sul :y; =0,
Suga 1y 1™ =0,
Sv,l:x9=0,

vl x 10 =0.
On the other hand, we will calculate the constraint algebra which takes the form

ri’@. v, My=0,  {y°(). x, M} =0,
'@,y “Mr=0,  {¥,’@., ;) =0,
'@ M =0, v’y M} =0,
Xy, =0, (e, v, (mi=0,
X,y MY=0,  {x @), x sy = =08 (x — y),
X0, v MY=0, (@), "M}y =0, (25)
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%@, v, M =0, /™.y, =0,
™ @ M =0,  {¥/*@.y,"(M}=0,

K@ Y Mr=0. @, v (=0,
X1 @), y,°(n)} =0, {yi(x), y;(»)} =0,
{(yix), y,(»} =0, ), v" ()} =0,

where we can see that the constraint algebra is closed.

We will finish this section identify the Dirac bracket for the theory. From the constraint
algebra, we can observe that the matrix whose elements are only the Poisson brackets be-
tween the second class constraints is given by

Con= 0 —’IaCdUIJ53(X -y) (26)
P \peedn; 8 x — y) 0 '

In this manner, we have that the Dirac bracket between two functionals A, B is expressed
by

{A(x), B(y)p ={Ax), B(»)}p +/dudv{A(X),C“(u)}CJﬁl(u, 0’ ), BMY, 27
where {A(x), B(y)}p is the usual Poisson bracket between the functionals A, B, {%(u) =
(x 1%, x 1) with C(;ﬁl (u, v) as the inverse of (26) which has a trivial form. As we know, the
Dirac bracket (27) will be useful to make progress in the quantization of the theory.

2.1 Gauge Generator
Following with the method, in this part we will find the gauge transformations for the theory

described by (5). For our purposes, we apply the Castellani’s algorithm [24] to construct the
gauge generator using the first class constraints (19), this is

1
G= / |:30"310Hl0 + o0&’ 0a 1% + 78,11, + &', <§ N (Bpere — deery) — 3hnlab>i|,
s

(28)
thus, we find the following gauge transformations on the phase space,
Soe’ o =12oe" 0,
5061(1 = —8081,
80B" 00 = 30&" 0a>
1
SOBlab = _E(aa‘glb - 8b‘91a)a
(29)

801_[10:0,
L
8ol = —577“ “(Op€re — Dc€1p)s

SoI1;% =0,
8oI1,;% =0.
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In particular, we can choose the parameters to be e/g = —ef = — A7, &!, = —2¢1y, = A!,
and considering (29) we find

el ,—el, —0,A,
1 1 1 1 1 (30)
B p,v_)B MU_E(a#A V_aUA ,u.)y

where we can see that e/, becomes to be a collection of 4 four gauge invariant vector
fields. We can prove by means of easy calculations that the action (5), the equations of
motion (3) and (4) are invariant under these gauge transformations. The nature of the gauge
transformations and the form of the theory described in (5) which corresponds to BF type,
allows us to formulate the next question; What about diffeomorphisms transformations?
Apparently diffeomorphisms symmetry is not present in the theory, but that is not true at all.
We can find the answer such as is developed in 2 4 1 gravity and Chern-Simons theory [24,
26] introducing a new set of gauge parameters

Alz_gpel ,
1 0 01 GD
A //.:_25 B P
obtaining
ely—el +Leel  +E7[due’, —Bpe’ ], 32)

B!,,— B!, + LB, +&°[0,B",, —3,B,, — 3,B!,,].

Therefore, diffeomorphisms corresponds to an internal symmetries of the theory just as com-
plete general relativity theory.

As conclusion for this section, we can see that it is possible to obtain all the physical
information reported in [17] without resort to ADM variables. Of course, we can obtain
the results obtained in [17] considering the second class constraints given in (20) as strong
equations. However, the spirit of this paper is make progress for futures works where we
will investigate the advantage at quantum level between the ADM formulation and the for-
mulation presented in this work.

3 Covariant Canonical Formalism

In order to extend our analysis, in this section we will perform the covariant canonical for-
malism for the theory described by the action (5). In particular with this method we will
establish the necessary elements for study the quantization aspects of the theory in future
works, where we will use the symplectic method or the Hamiltonian method developed
above. As important results reported in this section, we will find by other way the symme-
tries found using the Hamiltonian method.

We start calculating the variation of the action, obtaining

1
8S[B. ] :/ dx4|:56aﬁw(3uev1 —0e,)3Bap
M
— e“f‘“"auB’aﬁSe’U + aﬂ(eaﬁuvBlaﬂaeIV)}’ (33)
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where we can identify the equations of motion (3), (4) and we identify from the pure diver-
gence term the symplectic potential for the theory [25]

PH — 6’“’0”3 Bmﬁ(Selv, (34)

which does not contribute locally to the dynamics, but generates the symplectic form on the
phase space.

From the equations of motion (3) and (4) we define the fundamental concept in the studio
of the covariant canonical formalism of the theory: the covariant phase space for the theory
described by (5) is the space of solutions of (3), (4), and we will call it Z.

As we known, we can obtain the integral kernel of the geometric structure for the theory
by means of the variation (exterior derivative on Z see [25]) of the symplectic potential (34),
this is

w:/ JﬂdEMZ/ awdzlL:/ €"P§Brog A Se’ \dX,,, (35)
z z z

where X is a Cauchy hypersurface.

In addition, we will prove that our symplectic form is closed and gauge invariant. More-
over, the integral kernel of the geometric form J# is conserved (9, J* = 0), which guaran-
tees that w is independent of X.

To prove that J# defined in (35) is conserved we need calculate the linearized equations
of motion. For this, we replace in (3), (4) e/, — €', + 8¢’,, and Bros — Brag + §Brag.
keeping to first order in § we find the linearized equations given by

P, Se, =0,

(36)

EaﬁMUaH(SBlaﬂ =0.

In this manner, using the linearized equations we have
A" =0, 8" =" P9, 8Brap A Se’, + € P8 Brag A e’ ) =0, (37)

showing that w is independent of X.

On the other hand, we need to remember that the closeness of w in this covariant canon-
ical formalism is equivalent one to the Jacobi identity that Poisson brackets satisfy, in the
usual Hamiltonian scheme. To prove the closeness of w, we can observe that 8%el, =0,
82Bj4s = 0 because ¢!, and By, are independent O-forms on the covariant phase space Z
and § is nilpotent, so using this fact in @ we find

Sw:/ S*WHdE, :/ [€"7P 8% Brog NS’y — € P8 B o A 8%, ]dE, =0,  (38)
z z

this prove that w is closed.
What about the gauge transformations found above? For this aim, we consider that upon
picking X to be the standard initial value surface # = 0, (35) takes the standard form

a)=/ ST1,“ A Sel,, (39)
X

where T, = By
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For two O-forms f, g defined on Z, the Hamiltonian vector field defined by the symplectic
structure (39) is given by [27]

Xp=| - - 2 (40)

/(Sf 8 5f 8
s 8T1,% 8el,  Sel, 811,

and the Poisson bracket { f, g} := —X s(g) is given by

= o8 o °8 41
B /Eaelaan,a ST1,« 8¢l @

On the other hand, we rewrite the first class constraints found in (19) with the test fields
D!, D',, C! and C’, on T in the next form

yi°[D'] :=/ D'(11,%,
P}

y1°“[D’a]:=/ D' (A", 11,"),
N (42)
yilC]:= / C!(@,11,9),
M

1
yi“[Ca] 12/ c'y (577“'”(317616- — dcerp) — 3b1'11“b> :
b
By inspection, the functional derivatives different to zero are given by

) ! ) !
nlC_ o e
(SH[‘I 8e’a

S}IG[CIa] 5}1“[C1a] 1 be
LT 42—, ———— = —n*(0,Cyc. — 0.Crp).
g sel, R @G 1)

(43)

Thus, the motion on Z generated by y;[C'] is given by

elg>ely —€d,CT + 0(e?),
44)
IT,% — T1;¢,

and the motion on Z generated by y;%[C',] is given by

61(, = e’(,,

1 e ) (45)
;% ;" — 6577“ “(0,Cre — 0:Cpp) + O(€7).

where € is an infinitesimal parameter [27]. We can see that the gauge transformation (44)
and (45) corresponds to those found using Dirac’s method (see (30)).

Now, we will show that @ has not components tangent to the gauge directions, which are
specified by (30) or (44) and (45).

se'l, =68e', — 0, N,

SB'!,, =8B! —l(a A, —3,ATY) (40
jay nv ) " v v wrs
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where in this context A?, A’,, corresponds to be 1-forms on Z. Using this fact, we find that
 will undergo the transformation as

1
a/:/ze“”"ﬂ(SB}aﬁ/\ée”vdEu=a)—/;8v [Eemﬂ (8QA15—3ﬁA1a)/\A’i|dEu, 47

where (36) has been used, thus, for fields with compact support w is a gauge invariant geo-
metric form.

Therefore, as a conclusion of this section, we have constructed a closed and gauge invari-
ant symplectic form on Z which in turns represent a complete Hamiltonian description of
the covariant phase space for the theory and will allow us to analyze the quantum treatment
in forthcoming works.

4 Conclusions and Prospects

In this paper, Dirac and the symplectic methods for the Einstein’s action in the G — 0 limit
has been performed. Within the Dirac’s method we have developed the analysis working
with the complete configuration space and without involve the typical ADM variables as
is reported in [17]. As important results obtained using the Hamiltonian method, were the
identification of the extended Hamiltonian, the extended action and the separation of the
constraints in first and second class. The correct identification of the constraints allowed us
to find the relevant symmetries such as the diffeomorphisms and could carry out the count-
ing of the physical degrees of freedom, which the analysis allow one to conclude that the
system is a topological field theory. It is important to remark that the present analysis can be
useful to understand the G — 0 limit of general relativity, because we have present a back-
ground independent and full diffeomorphism invariant free field theory. This fact becomes
to be important because in the analysis we have not broken the important symmetries that
characterize to Eintein’s theory of gravity. In addition, we extended our work constructing a
closed and gauge invariant symplectic structure which contains all the relevant Hamiltonian
description of the covariant phase space. In particular using the geometric form, we could
find the same symmetries that we found using the Hamiltonian method. With the results pre-
sented in this paper, we have all the necessary elements to make progress in the quantization
of the theory by means of the Dirac’s method or covariant canonical formalism which is
absent in the literature and will be reported in forthcoming works.
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